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ABSTRACT: We study the entropy of extremal four dimensional black holes and five di-
mensional black holes and black rings is a unified framework using Sen’s entropy function
and dimensional reduction. The five dimensional black holes and black rings we consider
project down to either static or stationary black holes in four dimensions. The analysis
is done in the context of two derivative gravity coupled to abelian gauge fields and neu-
tral scalar fields. We apply this formalism to various examples including U(1)? minimal

supergravity.
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1. Introduction

The attractor mechanism has played a significant part in furthering our understanding of
black holes in string theory [ -[]. A characteristic of extremal black holes, the mechanism
fixes the near horizon metric and field configuration of moduli independent of the moduli’s
asymptotic values.

While the original work was in the context of spherically symmetric supersymmetric
extremal black holes in (34 1)-dimensional N = 2 supergravity with two derivative actions,
the mechanism has been found to work in a much broader context. Examples of this



include non-supersymmetric theories, actions with higher derivative corrections, extremal
black holes in higher dimensions, rotating black holes and black rings [{-pJ].

In particular, by examining the BPS equations for black rings, [BJ], found the attractor
equations for supersymmetric extremal black rings. Motivated by the results of [54, §, R,
which demonstrate the attractor mechanism is independent of supersymmetry, we sought
to show the attractor mechanism for black rings with out recourse to supersymmetry by
using the entropy function formalism of [29]. We note that [f5 have made use of the
formalism for studying small black rings.

Using the connection between four dimensional black holes and five dimensional black
rings in Taub-NUT [56-Fg] we construct the entropy function for black rings. In fact we
found that the same technique works for five dimensional black holes. This allows us to
write down a single entropy function describing both black holes and black rings — one
entropy function to rule them all.!

In section J we discuss our set up and apply dimensional reduction from five to four
dimensions. In section B we study black holes and black rings whose near horizon geometry
have AdSsx S%xU(1) symmetries. The U(1) may be non-trivially fibred. After dimensional
reduction along the U(1), we get an AdSy x S? near horizon geometry. This class includes
static black holes with AdS, x S® horizons and black rings with AdSs x S? horizons. For
the black holes the U(1) is fibred over the S? while for the ring we fibre over the AdSs. We
specialise these examples to the case of Lagrangians with very special geometry and find the
BPS and non-BPS attractor equations. In section || we consider an AdSy x U(1)? horizon
which projects down to an AdSs x U(1). In this case both U(1)’s may be non-trivially
fibred.

2. Black thing entropy function and dimensional reduction

We wish to apply the entropy function formalism 9, BQ], and its generalisation to rotating
black holes [i0], to the five dimensional black objects — black rings and black holes. These
objects are characterised by the topology of their horizons. Black ring horizons have S? x S*
topology while black holes have S? topology.

We consider a five dimensional Lagrangian with gravity, n, Abelian gauge fields, F!,
ns neutral massless scalars, X°, and a Chern-Simons term:

1
5= 167Gs

/d“”x\/—_g(R—BST(X)a“XSa“XT— Fra(RVEL FIW gy e FY I 4K > ,

(2.1)
where e*%7 is the completely antisymmetric tensor with €123 = 1/ v/—g. The gauge
couplings, fr.7, and the sigma model metric, hgr, are functions of the scalars, X, while the
Chern-Simons coupling, ¢rjx, a completely symmetric tensor, is taken to be independent
of the scalars. The gauge field strengths are related to the gauge potentials in the usual
way: F1 = dA’. We use bars to distinguish 5D objects from the 4D ones which will appear

!During the preparation of the paper, [@] appeared which carries out this analysis for a class of five
dimensional rotating black holes.



after dimensional reduction. We take the indices {I,..., M} to run over the n, 5D gauge
fields and the indices {S,T'} to run over the ng 5D scalars.

Since the Lagrangian density is not gauge invariant, we need to be slightly careful about
applying the entropy function formalism. Following [BJ] (who consider a gravitational
Chern-Simons term in three dimensions) we dimensionally reduce to a four dimensional
Lagrangian density which is gauge invariant. This allows us to find a reduced Lagrangian
and in turn the entropy function. As a bonus we will also obtain a relationship between
the entropy of four dimensional and five dimensional extremal solutions — this is the 4.D-
5D lift of B9, pg] in a more general context. The relationship between the four and five
dimensional charges is extensively discussed in [@, @]

Assuming all the fields are independent of a compact direction v, we take the ansatz?

ds* = w g, datda” + w?(d + Agdm“)Q, (2.2)
Al I I

A’ = A dat +a’ (V) (dy + Agdac“) ,

X9 = X%(ah).

Whether space-time indices above run over 4 or 5 dimensions should be clear from the
context. Performing dimensional reduction on ), the action becomes

=

_ 1 4 — s et R vad i i
5= 167TG4 /d VY (R a hSt(q))aq) 00" — fl]((I))FMVFj i §fzj((1))€“ FMVFQ,B
(2.5)

(/ d¢> Gy = Gs, (2.6)

fij and fi; are (1+n,) x (1 + n,) matrices:

where

0 J
0 [ L3 5L M ro L
fij = <4w HU,fLJ‘ia o whiat) (2.7)
I wfILa wfIJ
0 J
~ 0 QEKLMCLK(ZL(ZM 35JKL(ZK(ZL
fij = XL % , (2.8)
I 3crkrata 6crrira
and hyg is a diagonal (1 + n, + ns) x (1 + n, + n,) matrix:
. 9 R
hys = diag W 2w Sy, hrs | - (2.9)

The gauge indices, {i,j}, labeling the (1 4+ n,) four dimensional gauge fields, run over
0,1,...,n,. The additional gauge field, A° comes from the off-diagonal part of the five

2For simplicity, we will work in units in which the Taub-Nut modulus is set to 1. Due to the attractor
mechanism, the modulus will drop out of the final result.



dimensional metric while the remaining ones descend from the original five dimensional
gauge fields. The four dimensional gauge field strengths are given by F? = (dA°, dAT)
where the four dimensional gauge fields are given in terms of the 5D ones by (R.J). The
scalar indices, {r, s}, labelling the four dimensional scalars, run over (1 + n, + ny) values.
The first additional scalar, w, comes from the size of the Kaluza-Klein circle. Then next
set of n, scalars, which we label a!, come from the 1)-components of the five-dimensional
gauge fields and become axions in four dimensions. Lastly, the original ns five dimensional
scalars, X°, descend trivially. We write the four dimensional scalars as, ®° = (w,al, X S ).
Finally, notice that the coupling, ﬁj(ﬁ), is built up out of the five-dimensional Chern-
Simons coupling and the axions. Details of the derivation of the form of fij can be found
in appendix [A].

In the next two sections we shall consider what happens when the near-horizon geome-
tries have various symmetries. Firstly, we will look at black holes and black rings with a
higher degree of symmetry, namely AdSs x S x U(1), where the U(1) may be non-trivially
fibred. Upon dimensional reduction we obtain a static, spherically symmetric, extremal
black hole near-horizon geometry — AdSy x So — for which the analysis is much simpler.
The entropy function formalism only involves algebraic equations. After that we will look
at black objects whose near horizon symmetries are AdSs x U(1)? in five dimensions. Once
again, the U(1)’s may be non-trivially fibred. After dimensional reduction, we get an ex-
tremal, rotating, near horizon geometry — AdSy x U(1) — for which the entropy function
analysis was performed in [f(]. For this case, the formalism involves differential equations

in general.

3. Algebraic entropy function analysis

In this section, we will construct and analyse the entropy function for five dimensional
black holes and black rings sitting in Taub-NUT space with AdSs x So x U(1) near horizon
symmetries (with the U(1) non-trivially fibred). One can formally dimensionally reduce
along the U(1) to obtain an effective four dimensional description in terms of a black hole
with AdSs x Ss near horizon symmetries.

After introducing an appropriate ansatz, we will calculate and analyse the entropy
function. We will apply the analysis to static black holes which turn out to have AdSs x S3
horizons and black rings which turn out to have AdSs x S? horizons. We will see that
these black rings are in some sense dual to the black holes. Interestingly, we do not need to
assume the S3 and the AdS3 geometries — they follow from the entropy function analysis.

We will then apply our result to Lagrangians with real special geometry.

3.1 Set up

Before proceeding to the analysis, and to justify our ansatz, (@)f(@), for the near horizon
geometry, we need to establish some notation and consider the geometry of the dimensional
reduction of five dimensional black holes and black rings to four dimensional black holes.
As previously mentioned, five dimensional black holes and black rings are characterised
by their horizon topologies which are S and S? x S! respectively. Assuming no dependence
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Figure 1: A Black ring away from the centre of Taub-NUT is projected down to a black hole and
naked Kaluza-Klein magnetic monopole in four dimensions. The angular momentum carried in the

compact dimension will translate to electric charge in four dimensions. An AdS? x S? x U(1) near
horizon geometry will project down to AdS? x S2. On the other hand, an AdS? x U(1)? will go to
AdS? x U(1).

Black hole at the center of

5
X Taub-NUT Dimensional Reduction
via Hopf fibration
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Figure 2: A black hole at the centre of Taub-NUT caries NUT charge. Using the Hopf fibration
it can be projected down to black hole carrying magnetic charge. A spherically symmetric black
hole with near horizon geometry of AdS? x S3 will project down to an AdS? x S?. On the other
hand, a rotating black hole with a AdS? x U(1)? geometry will go to AdS? x U(1).

on the fifth direction we can formally dimensionally reduce their near horizon geometry to
obtain an effective four dimensional description. In the case of the S% we can dimensionally
reduce along a U(1) fibre and for S? x S! we can dimensionally reduce along the S'. In
both cases we end up with an S? topology so that the effective four dimensional description
of both five dimensional black holes and black rings is in terms of a four dimensional black
hole.

The dimensional reduction of black ring and black hole geometries in Taub-NUT space
is schematically illustrated in figure ] and [

Since the entropy function analysis only depends on the near horizon geometry we
will not be interested in the full geometry of Taub-NUT space. We will only be concerned
with its influence on the near horizon geometry. The effect of the Taub-NUT charge is to



introduce identifications so that the black hole horizon topology becomes S/ Zyo and the
black ring horizon topology becomes 52 x S/ Lo

We either use $°, to denote the Taub-NUT charge of the space a black ring is sitting
in, or p¥, to denote the charge of a black hole sitting at the centre of the space. In each
case the U(1) will be replaced by either U(1)/p° or U(1)/p°. Unlike the black hole, the
black ring does not carry Taub-NUT charge. Since we are only looking at the near horizon
geometry, the only influence of the charge on the ring will be to induce an identification
which we can impose this by hand. To encode asymptotically flat space we simply set the
Taub-NUT charge to 1 in both cases. For a unified presentation, we include p® and 3° in
the formulae below. Given this notation, when we consider black rings, we must remember
to set p° = 0 and mod out the U(1) by 5°. When considering black holes, p® is non-zero
and, since we do need to mod out by hand, we set p° = 1.

For black holes, we can fibre the U(1) over the S? to get S*/Z,0 while for the rings it
will turn out that we can fibre the U(1) over the AdSs to get AdSs/Zz0. These fibrations
will only work for specific values of the radius of the Kaluza-Klein circle, w, depending

0 respectively.3

on the radii of the base spaces, S? or AdS?, and the parameters, p° or e
Even though we start out treating w as an arbitrary parameter, we will see below that
the “correct” value for w will be dynamically generated by solving the equations of motion
for w coming from the entropy function analysis. The fibration which gives us S® is the
standard Hopf fibration and the one for AdS, which is very similar, is discussed towards
the end of appendix [d.

Now, to study the near horizon geometry of black holes and black rings in Taub-NUT

space, with the required symmetries, we specialise our Kaluza-Klein ansatz, (R.2)-([4), to

2
ds? = w! [vl (—r2dt2 + d%) + vy (d6* + sin® 0d¢?)
r

+w? (dip + € rdt + p° cos 0d¢)2 : (3.1)
Al = el rdt + p! cos0dg + o' (d¢ + € rdt + p° cos qub) ) (3.2)
5 _ S

)

where the coordinates, 0 and ¢ have periodicity 7 and 27 respectively. The coordinate
¥ has periodicity 47 for black holes and 4w /p° for black rings. This ansatz, (B.1)-(B.9),
is consistent with the near horizon geometries of the solutions of [B0—[J] as discussed in
appendix [d.

Now that we have an appropriate five dimensional ansatz, we can construct the entropy
function from the dimensionally reduced four dimensional Lagrangian. From the four
dimensional action, we can evaluate the reduced Lagrangian, f, evaluated at the horizon
subject to our ansatz. The entropy function is then given by the Legendre transformation
of f with respect to the electric fields and their conjugate charges.

The reduced four dimensional action, f, evaluated at the horizon is given by

1 1 47
f= 167Gy /Hdﬂdqb\/—_gﬁ = T6n (130—G5> /Hdﬂdqb\/—_gﬁ. (3.4)

3¢9 is conjugate to the angular momentum of the ring.



The equations of motion are equivalent to
f,vl =f,v2=f,w=f,a:f§=07 (3-5)
[ = Nai, (3.6)
0

where e’ = (e°,e!) and ¢; are its (conveniently normalised) conjugate charges. We choose
the the normalisation N = 47 /'G5 = 1/G4. Using the ansatz, (B.1), we find

- < 27 ) {m — vy —(v1/v2) [2w3(P°)? + wfrs(p" + p°al)(p” + p°a’)] }

G5 +(va/v1) [Fw3(e9)2 + wfrs(el + € al) (e + e®a’)]
24 1 1
+ <;§0—C7¥T5> 1K {pleJaK + g(poel + epl)alak + 5poeoaIaJaK} ’ (3.7)
while (B.6) gives the following relationship between the electric fields, e’, and their conjugate
charges ¢;:
dr = (v2/vi)wfrs(e” +€%a?), (3.8)
R R 1
do — a'qr = (v2/v1) <1w360> : (3.9)
where, p' = (p°, p!), fij is given by (R.§) and the shifted charges, ¢;, are defined as
Gi = qi — fup’. (3.10)
The entropy function is the Legendre transform of f with respect to the charges ¢;:
£ =2n(Nge' — f). (3.11)

In terms of £ the equations of motion become

571)1 = 571)2 = 57“) = 5@\ = 55 = 575 =0. (312)
Evaluating the entropy function gives
i 472
E=2n(Ng'e; — f) = G- {v2 —vi + (vi/v2)Verr } (3.13)
where we have defined the effective potential
Vet = Y8545 + figp'p’ (3.14)

where fi; is given by (B-7) and f%, the inverse of f;;, is given by

0 J
- Qa3 —Aw3a’
pi= 0 e , (3.15)
I\ —4w3a! w4+ 4w3ala’

where fI/ is the inverse of f;;. More explicitly, the effective potential is given by

Vi = 1w?’(po)2 +4dw™? {QO — foj@p’ — a (a1 — ffj(a)Pj}z

4
+wfry(X) {p" +alp’} {p” +a’p°}
+w (X)) {qz - fzk(ﬁ)pk} {qJ -~ ﬁn(ﬁ)pl} : (3.16)



3.2 Charges

From a four dimensional perspective, the charges are simple to interpret — the p’ are
conventional magnetic charges and the ¢’ are the conjugates to the electric field. Since we
are using dimensional reduction to perform our calculations, it is easiest to work with these
charges. When we write the gauge field in terms of a Kaluza-Klein ansatz, (B.J), from a
five dimensional perspective, things are a little more complicated. We need to separately
consider the charges p°, p’, ¢° and ¢'.

The charge p° corresponds to the Taub-NUT charge while the p! are related to the
dipole charge. When p° is zero, the charges p! correspond to dipole charges of the Sy
parameterised by 6 and ¢. This is the case for the black ring solutions considered in
section B4. On the other hand, when p° is non-zero, the flux through the S,, in our
conventions, goes like p! + afp®. It is this quantity should be interpreted as the dipole
charge rather than p’. So generally, the relationship between p’ and the dipole charge will
depend on the value of the axions, a! and the Taub-NUT charge. When we are considering
black holes, we expect the dipole charge to be zero, but as we will see in section B.§, the
p! are non-zero. In this case they are simply to be interpreted as a quantity proportional
to al.

The charge ¢° is related to the angular momentum while the ¢ are related to the
electric charge. When €° is zero, the ¢! are simply the conjugates to the electric-field.
Analogous to the dipole charges discussed above, when € is non-zero, the electric field goes
like ef 4+ a’€’. In this case, the relationship between ¢! and the electric charge depends on

the values of €' and al.

3.3 Preliminary analysis

While the effective potential Vg is in general quite complicated, the dependence of the
entropy function, (B.13), on the S 2 and AdS? radii is quite simple. Extremising the entropy
function with respect to v1 and vs, one finds that, at the extremum,

472
€= Vglov_o, 3.17
G- itlov=o (3.17)
with
v1 = v2 = Vet |lov =0, (3.18)

where the effective potential is to be evaluated at its extremum:
8{%6’)3}1/63 = 0. (3.19)

From, (B.1§), we see that the radii of the S? and AdS? are equal with the scale set by size
of the charges.

As a check, we note that, the result, (B.17), agrees with the both the four and five
Hawking-Bekenstein entropy since,

Ag) = /dwd0d¢,/g¢¢gggg¢ = 167‘(21}2/]50 (3.20)



SO
£ = 4L “H — Spy. (3.21)

Notice that w drops out of (B.21)).

Finding extrema of the general effective potential, Vg, given by (B.16) may in principle
be possible but in practice not simple. In the following sections we consider simpler cases
with only a subset of charges turned on.

3.4 Black rings

We are now really to specialise to the case of black rings. As discussed at the beginning of
the section, for black rings, we take p® = 0 so that our AdSs x U(1) x S? ansatz* becomes

d 2
ds®> = w™! [vl <—T2dt2 + _7“2 ) + vg (d92 + sin? 9d¢2) + w? (d¢ + e rdt)2 , o (3.22)
r

Al = el rdt + p' cos0dg + o’ (d¢ + el rdt) , (3.23)
X5 =, (3.24)

In this case the gauge field (or in 4-D language the axion) equations simplify consid-

erably and it is convenient to analyse them first. Varying f with respect to @ we find
drj(e! +e%’) =0 (3.25)

where dy; = wfrye® +6¢rxp’. Assuming dy; has no zero eigenvalues, (B-23) implies that
the electric field, Fi/ = e/ + e%a’, is zero. Using (B-§), (B-10) this in turn implies §; = 0
which, using (.§), (B.10), allows us to solve for the axions:

a* =cfq;, (3.26)

K

where %7 is the inverse of

Crj = GE]JKPK. (3.27)

Notice that ¢7y is equal to the sub-matrix, fj 7, with a’€ replaced by p¥. Now substitut-

]

ing (B.24) into the definition of gy we find:

. 1_
do=q0— 3¢ aras. (3.28)

So, eliminating the axions and using ¢; = 0, the effective potential becomes

Ve = wfrp'p” + (4w™?)(Go)*. (3.29)
Using Oy Veg = 0 we find
wt = 1200 (3.30)
=V ,

41t will turn out that once we solve the equations of motion, the value of w is such that the geometry
is AdSs x S%. In appendix E, we have discussed the near horizon geometry of supersymmetric black ring
solution.



where we have defined the magnetic potential, V; = fryp'p’. So

4
Ver = gwVir = 16w™3(go)? (3.31)

Eliminating w from Vg we get

872 4 2
E=——1/do | =V . 3.32
ﬁOij q0 <3 M> ( )
We note that
etw? = vyw™! (3.33)

which, we see by comparison with ([C.43), means that we have a $? x AdSs/Z near horizon
geometry. Finally, using (B.1§), (B.31)), (B.33)) we can also write the entropy as

3
4% (4 2 o1
“Vy .34
£ PG5 <3 ) (") (3:34)

3.5 Static 5-d black holes

We now consider five dimensional static spherically symmetric black holes. Since they are
not rotating we take e? = 0. This is in some sense “dual” to taking p® = 0 for black rings.
To examine this analogy further, we will relax the natural assumption of an AdS, x S°
geometry to AdSy x S% x U(1). We will see that the analysis for the black holes is very
similar to the analysis of the black rings with the magnetic potential replaced by an electric
potential. Once we solve the equations of motion we recover an AdSs x S° geometry via
the Hopf fibration. This is analogous to the black ring where we got AdSs x S? with the
U(1) fibred over the AdSs rather than the S2.

With ¢® = 0, our ansatz becomes
d 2
ds? = w™! [vl (—TthQ + r—g> + Vg (d@2 + sin? 9d¢2) + w? (dw + p° cos 6d¢)2 , (3.35)
Al = el rdt + p! cosOdg + af (dw + p° cos Hdgb) , (3.36)
% =S, (3.37)

In this case the gauge field equation becomes

dry(p? +pa’) =0 (3.38)

where d]J = wfrp® — 6¢rrrce’s. Assuming d]J has no zero eigenvalues, (B.3§) implies
F91¢ = 0, which, together with (B.9), (B-10), gives

do—a'Gi =0 (3.39)
a’ = —p% /p°, (3.40)
dr = qr + 3¢k’ p™ /p° (3.41)

,10,



and the effective potential becomes

1 ST A A
Vet = (Zw3> (po)” +w ' F17 414y, (3.42)
Using 9y, Ve = 0 we find
4V,
wt=L (3.43)
35

where we have defined the electric potential Vi = f//§;4;. So

4 2

Vet = gw*IVE = w? (po) (3.44)
Eliminating w from £ we find
3
42 4\
E=— =V . 3.45
&\m (5v) (3.45)
We note that, analogous to the ring case where we had egw2 = vw !,
ppw® = vow ™ (3.46)

which, via the Hopf fibration, gives us an AdSs x S3/ Z,o near horizon geometry.

3.6 Very special geometry

We now consider the explicit example of N' = 2 supergravity in five dimensions corre-
sponding to M-theory on a Calabi-Yau threefold — this gives what has been called real or
very special geometry [64—[(]. Some properties of very special geometry which we use are
recorded in appendix [B. Building on the general results of the previous sections, to find
the attractor values of the scalars and the entropy we just need to extremise the relevant
magnetic or electric potentials.

3.6.1 Black rings and very special geometry

For very special geometry, the magnetic potential is given by

_ 1
Vi = frup’p’ @) §H1JPIPJ (3.47)

where the properties of Hyy can be found in appendix [
Extremising the magnetic potential gives

1 B 1
0V = 532‘ (Hrsp'p”) () Zai (prp") =0 (3.48)

These equations have a solution
AX71 =pr (3.49)

- 11 —



This condition follows from one of the BPS conditions found in [BJ]. To see that (B.49) is

indeed a solution, we insert it into (B.4§), which gives

di(pp") = ai(pr)p" (3.50)
bad A0 (X p)p" (3.51)
B o5, a7 (3.52)
B o x7) (3.53)
) —NX,0;(X7) g 0 (3.54)
We can fix the constant \ using (B.J) which gives
Xy =— L N (3.55)
(§Crikp'p’p¥)®
so finally we get for X/,
I
X'=— P . (3.56)
(6Crixp'p/pk)s
and
L rJ_ Lo IyJ _ 342
Virlov=o = SHrp'p” = GAH X X7 = A (3.57)
2
3 /1 3
=5 <ECIJKPIPJPK > (3.58)

This is the supersymmetric solution of [B3] derived from the BPS attractor equations.
Notice that (B.51]) can be rewritten as extremising the magnetic central charge, Zy; =
Xiph:
O(X)pl =0iZy =0 (3.59)
So we see that 9;Va; = 0 together with the BPS condition (B.49) implies Z); extremised.
The converse is not necessarily true suggesting there are non-BPS black ring extrema of

Vs — this is discussed below.
Now, from (B.5§), (B.39) we find that the entropy is

gn? |, (1 4m? (1 -
&= ]50—6,5\/(10 <ECIJKPIPJPK> e <ECIJKPIPJPK> () (3.60)

As discussed in appendix [J this gives the correct entropy for the special case of the ring

solution of [p7).

3.6.2 Static black holes and very special geometry

The analysis for these black holes is analogous to the black rings. From the attractor
equations for a static black hole, governed by

Vi = 74145 = 20" G144 (3.61)

- 12 —



we will get the equation:
0;Ve = 20:(H" 41d7) = 0,(¢"dr) = (3.62)

This will have similar solutions

q[

X! = R
(:Crixd'§’4%)?

(3.63)

Similarly, extremising the electric central charge Z. of BJ| together with the BPS condition
implies Vg is extremised. The converse is not necessarily true suggesting there are non-BPS
black hole extrema of Vg as noted in [f1].

In a similar fashion to the black ring case, we find that the entropy is given by

7T2

EZE

. (éC”K[wczf][16qJJ[16qKJ>. (3.64)

which, modulo a different normalisation for the charges, is the same as the entropy quoted
in [1] (albeit modified due to the presence of a Taub-NUT charge). As shown in ap-
pendix [0, our charges, ¢r, are related to those of [T1] by

164; = Q7. (3.65)
The appearance of the shifted charge ¢ rather than ¢y is due to the Chern-Simons term.

3.6.3 Non-supersymmetric solutions of very special geometry

In 4 dimensional N/ = 2 special geometry we can write Vig or the “blackhole potential
function” as [f]

Veu = |Z)* + |DZ|2. (3.66)

As noted in [{] and [fi] (in slightly different notation), for BPS solutions, each term of
the potential is separately extremised while for non-BPS solutions Vpp is extremised but
DZ # 0. It is perhaps not surprising that a similar thing happens in very special geometry.
In fact, this generalisation of the non-BPS attractor equations to five dimensional static
black holes has already be shown in [[{T] using a reduced Lagrangian approach.

The electric potential Vg can be written

1 o . . 2
JVE = H" 4547 = H'(D1Z8)(DsZp) + g(ZE)Q- (3.67)
Solving D;Vg = 0 we find a BPS solution, DiZp = 0, and another solution
92 ) )
gH]JZE—l-D]DJZE:O. (368)

Similarly, we find the magnetic potential, Vs, can be written

1
2Var = Hrpplp? = 521%4 +H YD1 Zy Dy Zy (3.69)
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and solving D;Vj; = 0 we find a BPS solution, D;Z; = 0, and another solution
1
gH[JZM+D[DJZM =0. (370)

We conjecture one can obtain some five dimensional non-SUSY solutions by lifting
non-SUSY solutions in four dimensions which have AdS; x S? near horizon geometries
using the 4D-5D lift. Furthermore the analysis of [f] should go through so that for such
solutions to exist we require that extremum of Vg is a minimum — in other words the
matrix

O* Vgt

ovV=0

should have non-zero eigenvalues.

4. General entropy function

We now relax our symmetry assumptions to AdSs x U(1)?, taking the following ansatz

d82 _ w71(9)92(9)62\11(9) <—’I"2dt2 d’l" —|—ﬂ2d92> +w (9)672\P(9)(d¢+ 6(157‘(175)2
+w?(0)(dp + egrdt + bo(0)de)? (4.1)

Al = elrdt + b (0)(dg + egrdt) + a’ (6)(dyp + egrdt + bo(0)do) .

¢° = u®(0). (4.3)

Now, using (R.5) and then following [{], the entropy function is

E=2n <J¢e¢ +q-€— /d@d(b\/ - detgﬁ) (4.4)

= 2m(Jpeg + 7€)

2 /
—— do
PoGs

29*16*1(9’)2—zszﬁ—mﬁ*l(w’)%%a?srlﬁe = B Qe (W

S

+4.]gij (ﬁ)(ei—abi)bg»+2fij (ﬁ) {ﬁQ_le_Q\y (ei—abi)(ej—abj) 1Q€2qu/ b/}

It 2
Q%e?V sin (V' + 20 /Q 4.5
| (v +20//0)]; (15)
where f;;, fij,hrs and u® related to five dimensional quantities as discussed in section B
Now extremising the entropy function gives us differential equations.
Using the near horizon geometry of the non-SUSY black ring of [fZ], which we evaluate

in appendix [H, we find that the entropy function gives the correct entropy.
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A. Dimensional reduction

In this section present some details of the dimensional reduction of the Chern-Simons term.
We start with the five dimensional gauge-fields which we assume are independent of the
fifth direction:

Al = flﬁdw“ + flédy (A1)
= Alda" + a (2") (dy + ASda*) . (A.2)

From these definitions we can relate the five dimensional gauge field strength to four di-
mensional quantities as follows

Fly = Fpy, + ' Fp, + (9ua") A} — (9ya") A, (A-3)
F}, =0,ad’, (A.4)

where
F, = 0,4, — 0, A, t=1or0. (A.5)

We can now write a five dimensional Chern-Simons term,

V=Los = ek P ALFT K (A.6)
as
V=gLcs = ey’ (A[F;, Fl; +AALF,) FL)) (A.7)
— 3epye P’ F,FN (A.8)
= 3eryxe ™ (o (F, + o’ FD,) (FL + o F) + 407,05 A7 AT )
306 %(ala‘] ) WALFE, + %(ala‘] a) AL, ) (A.9)
ﬁ_afa}ngnyﬁ ’ ——2alalaXFY,F, ’

1 1
= 3cryx e’ <afF,{Vng + ga'a’ (B g + Fu, Fog) + za'a aKngF3ﬁ>

(0% 2 «
(A.10)
1 i ) spvaf
where the arrow, “—”, denotes the use of integration by parts, and é"123% = 0123 — 1, are

the completely antisymmetric Levi-Civita symbols.

B. Notes on very special geometry

Here we collect some useful relations and define some notation from very special geometry

along the lines of [B3, [{1]], which are used in section B.6.

e We take our CY3 to have Hodge numbers ! with the index I € 1,2,..., AL

,15,



The Kéhler moduli, X! which are real, correspond to the volumes of the 2-cycles.

Cryi are the triple intersection numbers. They are related to the couplings defined
in (1) by

Crix =4lerjk (B.1)

The volumes of the 4-cycles 2; are given by
1
X = 5CUKXJXK . (B.2)
The prepotential is given by

1
V= EC[JKXIXJXK =1 (B.3)

The volume constraint (B.J) implies there are n, = h''! — 1 independent vector-
multiplets.

denote the independent vector-multiplet scalars as ¢*, and the corresponding deriva-
tives 0; = a%i'

The kinetic terms for the gauge fields are governed by the metric
1 1
Hiy= =5 010, V], = =5 (CrorX™ — X1X)) , (B.4)

9_. In terms of the couplings used

where we use the notation for derivatives: 9; = xT

in (R.1) we have
Hij=hiy=2f1 (B.5)

The electric central charge is given by
Zp = X1q. (B.6)

We generalise this to
Zp=X'g. (B.7)

The magnetic central charge is given by

Zy = Xppt. (B.8)
From (B.9) it follows that
X x =3, (B.9)
SO
Xlo,x; =0, X'X;=0. (B.10)

which in turn together with (B.4) gives

X;=2H X7, (B.11)
0, Xy = —2Hr;0, X7 . (B.12)

,16,



e As suggested by, (B.11]), we will use 2H;; to lower indices, so for example,
pr =2Hp’, (B.13)

which in turn implies we should raise indices with %H Ly
r_ 1o
¢ =5H "4 (B.14)

where H'” is the inverse of Hyj.

e In order to take the volume constraint ([B.3) into account, it is convenient to define

a covariant derivative Dy,

Drf = <(9[ — é(@[ In V)|V:1> f. (B.15)

Rather than extremise with respect to the real degrees of freedom using 0;, we can
take covariant derivatives.

C. Supersymmetric black ring near horizon geometry

Here, we will consider the black ring solution of [B(], and find the near horizon limit of the
metric and the gauge fields. This will enable us to compare with the charges defined in
section B.1]

As [0] follows the conventions of [[J] the relevant Lagrangian is

L=R-FpFm — 2 FopF A, (1)

2
3V3
We can obtain this action from very special geometry by taking, n, = 3 with the gauge
fields equal to each other, F lﬂ, = F,,, fixing the scalars at their attractor value (B.53), and
taking

Crix = lerk| (C.2)

where €75 is the Levi-Civita symbol. This gives

X =1, Hpy= (%%%) (C.3)
and the Lagrangian becomes
L=R- % L P — iFaﬁFMVAVGO‘B“W. (C.4)
Comparing (C.1) and (C.4) we find
A, = \/—gAM (C.5)

2
Now, the metric for the black ring solution of [6(] is

ds® = —f2(dt + w)? + f~ds*(My), (C.6)
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where

2 2
=11l ey - L) ()
2(mdy _ R’ dy* 2 2 da’? 2y 7 42
ds*(R*) = e {y2—1 + (y* — 1)dv* + T2 + (1 —2%)d¢ } (C.8)
and w = wy(z,y)dV + wg(x,y)de with
%:—8%2(1—952) 3Q - B+ +y)] , (C.9)
wy = gq(1+y)+$(l—y2) 3Q - B +a+y)] . (C.10)

The variables ¥ and ¢ have period 27, while —1 < 2 < 1 and oo < y < —1. The gauge
field is expressed as,
V3

> [f(dt+w)—%((1+x)d¢+(1+y)d19)] . (C.11)

A
The ADM charges are given by
M=T0,  J=maBQ )
“ag 7! )
Jy = % q(6R% +3Q — ). (C.12)

Near horizon geometry. In these coordinates, the horizon lies at y — —oo. To examine
the near horizon geometry, it is convenient to define a new coordinate r = —R/y (so the
horizon is at 7 = 0). Then consider a coordinate transformation of the form

dt = dv — B(r)dr,

do = d¢' — C(r)dr, (C.13)
49 = dv' — C(r)dr, (C.14)

where B B C
B(r)=3+=1+By,  C(r)==+0o. (C.15)

where By = ¢*L/(4R) and C; = —¢/(2L), with

L= \/3 [%_32}, (C.16)

and
By = (Q+2¢%)/(4L) + L(Q — ¢°)/(3R?) (C.17)
Co = —(Q — ¢*)°/(8¢°RL?) (C.18)

By = ¢*L/(8R*)+2L/(3R)—R/(2L)+3R3/(2L3)+3(Q — ¢*)3/(16¢°RL?) (C.19)
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The metric (C.§) becomes

1 4r3sin 0 4 sin? 0
61" d? Rd dr + 280 e 4 A gy 4 34rSin 0
q Rq q
qL 3qR | (Q—q*)(3R* —2L?) :

2 0 drdd
* [23 osUtSr Tt 3¢RL )

ds® =

drd¢/

+L2d0"” + q; [d@Z +sin? 0 (d¢ — dﬁ’)z] . (C.20)
where we have neglected terms which will disappear when we take the near horizon limit:
r=elF/R, v="10/¢, ¢ = 0. (C.21)

The gauge field (C.11) becomes:

A=

DN |

\/§[f (dv+w') — %q ({142} dd' + {1 +y}dv') (C.22)

_ (fB e {f% + fug — %q(l ba)— %q(l - R/r)}) dr} (C.23)

with w' = wyd? 4+ wed@' In the limit of small r

1

- C.24
(e v By e e N
2
T _ _ _ _
=5 = Rf 4 (R =1t ele = A D) 2 + 0 (%) (C.25)
where f1 = (Q — ¢?)/2R? and fy = ¢°/4R%. Expanding w in the limit of small 7, we have,
B 7 1—3: 1 q(mq2+3q2—3Q)(1—x2)
= { } T { 3R2 (C.26)
_ [ @RV fedd 3¢° 3Qel 1 [& 3qRY1
L8 r3 § 8 8 7“2 S8R 2 [r
v’ 3¢°  3Qq , 3¢
+{ SRZ 3R T 8R? 2 } (C.27)

Expanding out the gauge field (neglecting some terms which can be gauged away) we
obtain:

+ % + 0(7«)] a¥' + |4 (@ + 1)+ O(r) | dx

+ [%ﬂ + (9(7«3)] dv + [e,xr + O(r?)] dr} (C.28)

where x = ¢ — 9 and

L (R* (2R* —3) ¢* + (—4QR’ + 6QR? + 2) ¢* + Q*R? (2R* - 3))
2 (C.29)

Cpr =
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Finally taking the near-horizon limit ({C.21]), letting z = —cos#, x — ¢ and ¥ — /2, we
(C.30)

obtain®
A:—g[ }dw—i—ﬂ(cosﬁ—l)d(b
So using ([C.5) to compare (C.30) with (R.3), (B.9) we get
p=pl = g (C.31)

Taking the same near horizon limit for the metric we obtain

2
+ L [d6 + sin? 0d¢?] (C.32)

41,
ds® = 2dvdi + —rdody’ + L>d9"
q

Let us for the moment consider the metric for constant € and y. If we perform the coor-

dinate transformation
dr
4y =dy— L= .
2L 7 (C.33)
2 ~
- q° dr
we get
AL 2 dr
ds? = —idtdy + L*a® + L (C.35)
q 47
Letting
dt = dt’ + gdﬁ (C.36)
we obtain the more familiar form of BTZ
4L dr
ds® = ~fdtdd + (L* + 2Li)dv? + Z—T (C.37)
q
Now defining
ry =L ¢=0+1]l
we get the standard form of the BTZ metric
2 2,.2 r2 2
o (r-— ) 2y or 2 .27 —ri
Returning to ([C.3§) and letting
t = 1%7/4, (C.40)
V=1/2 (C.A41)
e =1/L=q/L (C.42)

In our conventions the third angle, v, has period 4w
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we obtain ) )
1 dr l 2
2_ 12 252 0
ds® = Zl <—7" dr + 7:—2> + W (dl/) +e TdT) (C43)
This gives us the relationship between the AdS; and S! radii for the AdSs fibration. To
express this in terms of quantities in section B.4 we compare (C.4) with our ansatz (8.29),
which gives:

w o = ilz, (C.44)
w? ::iz2«ﬁ)*2. (C.45)

Upon eliminating 12, one obtains the relation (B.33):
w oy = w?(e?)?, (C.46)

which is precisely what we obtained in section B.4 by solving the equation of motion for w.
This is analogous to the Hopf fibration of S whose metric can be written

ds? = w vy (dB? + sin® 0dp?) + w? (dip + p° cos Odg)? (C.47)

with

w vy = w?(p°)%. (C.48)

Finally, setting, p° = 1, and substituting (C-2), (C.31)), (C-42) into (B-60) gives

47?2 B 1 A
=) = = (@2r%?L) = 2

= — 4
Gs 4G5 4G5 (C.49)

which agrees with the result in [57].

D. Spherically symmetric black hole near horizon geometry

In this section, we find the near horizon geometry of a extremal spherically symmetric
black holes so that we can relate near horizon and asymptotic quantities. This will allow
us to compare (B.64)) with known results.

We start with a spherically symmetric metric of the form

ds® = —f*(p)dr® + () (dp® + p*dQy,). (D.1)

Assuming that we have an extremal black hole, near the horizon at p = 0, f will go like
f(p) = Xp* + O(p°). (D.2)
Now, expanding (ID.1)) to first non-trivial order in p, making the coordinate transformations

T =t/(2)\%/?), (D.3)
p= /2, (D.4)
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and taking the near-horizon limit; r — er, t — t/¢, € — 0; we can write the metric, (D.1),
as

1 dr? 1
ds? = le [(—ertz + 77;) + (d6? + sin® 0dg?) | + le (dp 4 cosBdp)*.  (D.5)
Comparing (D.H) with (B-35) (assuming p" = 1) we obtain
w=A\"12)2, (D.6)

Following the conventions of [BI], the electric charge, Qy, is given by

HpF/7r = fQ—;. (D.7)
p
Now evaluating, (D7) near the horizon, using (B.§), (D-3), (D4), (D-9), gives
_ 1
f[JFt{ = 1—611) 1@[. (D.S)

Finally, recalling, F/ = e! + a’e’, and using (B-§) we get
164; = Q1 (D.9)

as asserted in the text.

E. Non-supersymmetric ring near horizon geometry

In section ], we construct the general entropy function for solutions with near horizon
geometries AdSy x U(1)2. Here, we begin with non-supersymmetric black ring solution
of [[J], and show that it falls into the general class of solutions mentioned in section [
Then we also evaluate the entropy of the black ring by extremising the entropy function.
We consider the action

1 1 1
I= V= By ALl W Py o) E.1
167G / g <R 17 6B prel v‘5> ’ (E1)

The metric for the non-SUSY solution is [[(Z]

1 H, F, 2
2 1 Hgly 0
ds” = hQHny(dt+A )
R? G dy?  da? G
F,H,H? — L dy? — 2+ L _dg? E.2
The functions appearing above are defined as
and
s A B.4
= 1 — .
h +F$Hy(w YA+ p) (E.4)
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with
s =sinh « ¢ = cosh « (E.5)

The components of the gauge field are

A} =/3c¢/hs , (E.6)
a3, = 3Rl . vl CAiC;F; M Cf’ch—;h] , (B.7)
Al = _\@M %52 - CH?’C%%] : (E.8)
Oy = c A(A—Fu)%, Cp=c u(uw)i;—z. (E.9)

A choice of sign ¢ = £1 has been included explicitly. The components of the one-form
AV = A?p dip + Ag d¢ are

C) 3C
AY(y) = R(1 —2cP - kg2 E.10
) = R+ e P - s (6.10)
1—22 M+ p
AY(x) = -R C T Oys? E.11
o) FoH, T+x (E11)
The coordinates x and y take values in the ranges
—1<2<1, —-oco<y<-—1, pl<y<oo. (E.12)

The solution has three Killing vectors, 9;, 0y, and 0y, and is characterised by four di-
mensionless parameters, A\, u, @ and v, and the scale parameter R, which has dimension of
length.

Without loss of generality we can take R > 0. The parameters A, u are restricted as

0<A<1l, 0<p<l (E.13)

The parameters are not all independent — they are related by

= E.14
12" 14 (E-14)
1+A 140\ (14’ (E.15)
1-Xx \1l-v 1—p) '
which, in the extremal limit, v — 0, implies
(3 + pi?)
A= "——7=- E.16
1+ 3u? ( )
and 3
s? = Z('U_Q -1) (E.17)
To avoid conical defects, the periodicities of ¥ and ¢ are
AY = Ap = 2mvVT — N1 + p)3. (E.18)
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E.1 Near horizon geometry

In the metric given by (E.J),there is a coordinate singularity at y = —1/v which is the

location of the horizon. It can be removed by the coordinate transformation [[(J]:

NENE Ny
dt =dv+ A% —"Lay,  dp=dy - "4

Gy Gy v
Letting, v — 0, making the coordinate change

R
(VA)7

and expanding to first non-trivial order in 7, the metric becomes

T = cos 0, y=—

ds? = [H,K;| (—7*dy"™ + 2uRdy/di + p® R*d6?)

2
WKy | o 9,0 [AMuHy . ,
+ [H%FJ R*sin” 0d¢ —i—[ K2 (dv+cw(Rd1/1/)+A¢(x)d¢) L.
where 2 2
(G20
and

K, =F, +s*(14+ X\ p).

(E.19)

(E.20)

(B.21)

(E.22)

(E.23)

We have neglected higher order terms in 7 which will disappear when we take the near

horizon limit below. Letting

=19 +v/Rey
u =v/Recye
T =€r

and taking, e — 0, the metric becomes

ds®> = [H,K,] (—r?du® + 2uRdudr + p>R*d9?)

2
9 K, 2 .2 2 AP H, 7 0 2
+ { e FJ R2sin? 0d6? + { M (C¢(Rd1/)) +A¢d¢>
Now we let
Rd
du = du + 227
.
u/
t=—
uR

Now we use the periodicities of ¢ and ¢ to redefine our coordinates,

d — Ldg,  df — T,

— 24 —
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(E.25)
(E.26)

(E.27)

(E.28)

(E.29)

(E.30)



where
L=+1-X1+p)’2 (E.31)

Finally we can write the metric as in (L)),

d 2
ds® = w1 (0)Q2(6)e2¥©® (—ertQ + TZ + 5%102) +w L (0)e YO (dg + eyrdt)?
+w?(0)(dyp + eordt 4 bo(0)dp)? (E.32)
Al = elrdt + b1 (0)(dg + eprdt) + a*(0)(di + egrdt + bo(0)de) (E.33)
with,
2
0= u3/2)\1/2%c¢R3 sin 6, (E.34)
o2 _ L3,u3/2)\1/20¢R3 sin2 0 (E.35)
)z el Ol '
€p = €0 = 0 (E36)
LAF,H, cyR
_ ik E.
w = | K, (E.37)
249
W(0) = —2 E.38
0)=on (.35)
The expression for the gauge fields reduce to,
Al =0 (E.39)
V3Rs [ C\(c® — h)c? (3¢ — h)

Al =d'(0) = — E.4
L=a) = 5 (NS - o B ) (B0
11 LaviOray — V3Re(1 + cos 6) C)s? B (3c? — 2h)

Ay =b(0) +a (6)6°(6) = h 1+ Acosb 1~ pcosd (B41)

and the expression for b! is,
bio) = V3Re(1 + cos ) Cys® (3¢ —2h)
h 14+ Acosf 1 — pcosf
V3Rs [ Cy(c® — h)c? 9 A%(cos 0)
where
h—1 420t eost (E.43)

14 Acoséd
Then using the entropy function ({.J), the entropy of the non-supersymmetric black ring
can be expressed as,

£ =2 R33PAV2(1 — N) (1 + p)*(CrP /N + 352Cu/ )] (E.44)

which agrees with the extremal limit, v — 0, of Bekenstein-Hawking entropy of the black-
ring solution in [[Z].
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